
Acta Informatica (2011) 48:213–242

DOI 10.1007/s00236-011-0137-8

Connectivity of Workflow Nets:

The Foundations of Stepwise Verification

Artem Polyvyanyy · Matthias Weidlich ·

Mathias Weske

Received: 1 October 2010 / Accepted: 26 May 2011 / Published online: 29 June 2011
Author’s version

Abstract Behavioral models capture operational principles of real-world or designed

systems. Formally, each behavioral model defines the state space of a system, i.e., its

states and the principles of state transitions. Such a model is the basis for analysis of

the system’s properties. In practice, state spaces of systems are immense, which results

in huge computational complexity for their analysis. Behavioral models are typically

described as executable graphs, whose execution semantics encodes a state space. The

structure theory of behavioral models studies the relations between the structure of a

model and the properties of its state space.

In this article, we use the connectivity property of graphs to achieve an efficient

and extensive discovery of the compositional structure of behavioral models; behavioral

models get stepwise decomposed into components with clear structural characteristics

and inter-component relations. At each decomposition step, the discovered compositional

structure of a model is used for reasoning on properties of the whole state space of

the system. The approach is exemplified by means of a concrete behavioral model and

verification criterion. That is, we analyze workflow nets, a well-established tool for

modeling behavior of distributed systems, with respect to the soundness property, a

basic correctness property of workflow nets. Stepwise verification allows the detection

of violations of the soundness property by inspecting small portions of a model, thereby

considerably reducing the amount of work to be done to perform soundness checks.

Besides formal results, we also report on findings from applying our approach to an

industry model collection.
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1 Introduction

Behavioral models are conceptual models that capture operational principles of real-

world or designed systems. The behavior of a system is defined by all possible states of

the system, together with principles of the state transitions that the system is capable

of. Behavioral models are typically expressed as directed graphs where nodes encode

states and directed edges specify principles of state transitions. These graphs expose

the compositional structure of behavioral models. The structure theory of behavioral

models studies relations between structure of a model and properties of the state space

that it specifies. Business process models capture the essence of how work is performed

in organizations and, as such, can be addressed as behavioral models. Business process

models are important for understanding the implications of business activities, for

suggesting improvements, and for providing a blueprint for the implementation of

business procedures in a company [1]. While the Business Process Model and Notation

(BPMN) [2] is regarded as the de facto standard for process modeling, other approaches

like EPC [3] and UML activity diagrams [4] are still in use.

Since the execution semantics of business process modeling languages is described

rather informally, formal investigations rely on a mapping to formal languages. Petri

nets, cf., [5], are a modeling language for describing concurrency in distributed systems

with precise execution semantics and established analysis techniques. Common practice

is to define the execution semantics of business process modeling languages by mapping

their modeling constructs to Petri nets, e.g., [6,7,8,9]. Workflow nets are a structural

subclass of Petri nets with a dedicated source place and a dedicated sink place, marking

the start and end of the process, respectively. Soundness is a desirable correctness

property of workflow nets [10], since a sound workflow net always terminates properly

and each task can contribute to the completion of a process. Consequently, a business

process is considered to be correct if the corresponding workflow net is sound.

Soundness verification is a well-studied problem. A basic technique for soundness

verification is state space exploration. However, state space exploration suffers from the

state space explosion problem, as the number of reachable states can be exponential in the

size of the model. In this article, we use structural analysis of workflow nets to investigate

soundness, providing insight into an alternative – and in many cases, preferable – way

to check soundness. In particular, we employ the connectivity property of workflow

nets. A workflow net gets decomposed into components based on its separating sets,

i.e., sets of nodes of the net that when removed yield the net disconnected. We proceed

stepwise, i.e., by gradually increasing the size of investigated separating sets. Based

thereon, we point out how the soundness verification can be organized from the derived

components of a workflow net. Where applicable, we draw conclusions on soundness

for the general class of workflow nets; otherwise, the results are restricted to safe or

free-choice nets. At each step of the decomposition, we argue about the algorithmic

complexity of reaching the step and suggest diagnostic information that can be presented

to process analysts as feedback on flaws in the behavior of a model. Though recent

works show impressive results in efficiency of the soundness verification of industrial

models, cf., [11], the results were achieved under the assumption of free-choiceness of

models. Efficient soundness verification in the case of general nets will, however, allow

one to verify models which contain advanced workflow patterns. Despite the variety of

existing soundness verification techniques, the efficiency and the structural diagnostic

information for the general class of workflow nets are unique characteristics of our

approach, coming at the expense of verification completeness. We see a great potential
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in combining our approach with existing techniques on soundness verification to achieve

more mature and complete process model verification.

This article is based on previous results. In [12], we initially discussed the idea of

using the connectivity property of behavioral models to guide their analysis. First results

on applying this idea for soundness verification of workflow nets have been presented

in [13]. Still, we elaborated solely on the decomposition which relies on separating

sets composed of a single node, viz., the biconnected decomposition of workflow nets.

This article goes beyond these initial results by investigating decompositions which are

based on separating sets of size two, i.e., the step of the triconnected decomposition,

and three, i.e., the step of the 4-connected decomposition. While the triconnected step

incorporates two results that have been shown for the triconnected components of

free-choice workflow nets in [14], we present novel results with respect to pruning and

compositionality of the biconnected workflow nets. All results for the 4-connected step

have not been discussed before. Besides the formal results on soundness verification for

each of the decomposition steps, our contribution is an comprehensive approach that

features diagnostic information on identified behavioral issues along with a verification

algorithm incorporating the separate verification results. We also report on findings of

applying our approach to a collection of real-world industrial process models.

The remainder of this article is structured as follows: The next section gives

preliminaries for our work in terms of basic definitions for Petri nets, workflow nets,

and soundness of workflow nets. Section 3 presents our main results. In this section,

we employ connectivity property of workflow nets to perform soundness verification,

i.e., subnets and their compositional relations obtained during connectivity-based

decomposition of nets are employed for verifying the correctness of the whole system.

Section 4 elaborates on the application and on the evaluation of our results. We present

a verification algorithm and report on results of the application of our approach for an

industry model collection. Section 5 generalizes the principles of the connectivity-based

verification of workflow nets into a comprehensive framework for connectivity-based

decomposition of behavioral models; the framework should be understood as general

guidelines for performing structural analysis of behavioral models. Section 6 reviews

related work. Finally, Section 7 concludes the article.

2 Preliminaries

This section introduces Petri nets – a well-known formalism for modeling distributed

systems, cf., [5]. A Petri net has a structure given by a net, a marking that represents

a state of the net, and the execution semantics that describes the principles of state

transitions. Afterwards, we present WF-nets – the subclass of nets which in this article

is in the focus of investigations for structural characteristics of behavioral correctness.

Definition 1 (Petri net)

A Petri net, or a net, N = (P, T, F ) has finite disjoint sets P of places and T of

transitions, and the flow relation F ⊆ (P × T ) ∪ (T × P ).

We identify F with its characteristic function on the set (P × T ) ∪ (T × P ). We write

X = (P ∪ T ) for all nodes of a net. For a node x ∈ X, •x = {y ∈ X | F (y, x) = 1} and

x• = {y ∈ X | F (x, y) = 1}. A node x ∈ X is an input (output) node of a node y ∈ X,

iff x ∈ •y (x ∈ y•). For Y ⊆ X, •Y =
⋃
y∈Y •y and Y • =

⋃
y∈Y y•. For a node x ∈ X,

in(x) = {(n, x) | n ∈ •x} are its incoming arcs and out(x) = {(x, n) | n ∈ x•} are its

outgoing arcs. We denote by F+ and F ∗ irreflexive and reflexive transitive closures of

the flow relation, respectively.
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Petri nets have precise execution semantics defined in terms of a token game.

Definition 2 (Net semantics)

Let N = (P, T, F ) be a net.

◦ M : P → N0 is a marking of N , where M(p), p ∈ P , returns the number of tokens

in place p. [p] denotes the marking when place p contains just one token and all

other places contain no tokens. We identify M with the multiset containing M(p)

copies of p for every p ∈ P .

◦ For any transition t ∈ T and for any marking M of N , t is enabled in M , denoted

by (N,M)[t〉, iff ∀ p ∈ •t :M(p) ≥ 1.

◦ If t ∈ T is enabled in M , then it can fire, which leads to a new marking M ′, denoted

by (N,M)[t〉(N,M ′). The new marking M ′ is defined by M ′(p) =M(p)− F (p, t) +

F (t, p), for each place p ∈ P .

◦ Let M0 be a marking of N . If (N,M0)[t1〉(N,M1) . . . (N,Mn−1)[tn〉(N,Mn) are

transition firings, then a sequence of transitions σ = t1 . . . tn, n ∈ N0, is a firing

sequence leading from M0 to Mn.

◦ For any two markings M and M ′ of N , M ′ is reachable from M in N , denoted by

M ′ ∈ [N,M〉, iff there exists a firing sequence σ leading from M to M ′. Note that

σ can be the empty sequence. We have M ∈ [N,M〉 for every M of N .

◦ A net system, or a system, is a pair (N,M0), where N is a net and M0 is a marking

of N . M0 is called the initial marking of N .

Workflow (WF-)nets form a subclass of Petri nets. WF-nets were proposed in [15] for

modeling workflow definitions. A WF-net is a net with two special places: one to mark

the initialization and the other to mark the completion of a workflow.

Definition 3 (WF-net, Short-circuit net, WF-system)

A Petri net N = (P, T, F ) is a workflow net, or a WF-net, iff N has a dedicated source

place i ∈ P , with •i = ∅, N has a dedicated sink place o ∈ P , with o• = ∅, and

the short-circuit net N ′ = (P, T ∪ {t⋆}, F ∪ {(o, t⋆), (t⋆, i)}), t⋆ /∈ T , of N is strongly

connected. A WF-system is a pair (N,Mi), where Mi = [i].

In the following we shall also refer to the class of free-choice Petri nets [16]. A net

N = (P, T, F ) is a free-choice net, iff ∀p ∈ P with |p • | > 1 holds •(p•) = {p}.

This article deals with structural characterization of behavioral correctness of WF-

systems. Soundness and safeness are basic correctness properties of WF-systems [10].

Soundness states that every execution of a WF-system ends with a token in the sink

place, and once a token reaches the sink place, no other tokens remain in the net.

Safeness refers to the fact that there is never more than one token in the same place.

Definition 4 (Liveness, Boundedness, Safeness, Soundness)

◦ A system (N,M0) is live, iff for every reachable marking M ∈ [N,M0〉 and t ∈ T ,

there exists a marking M ′ ∈ [N,M〉, such that (N,M ′)[t〉.

◦ A system (N,M0) is bounded, iff the set [N,M0〉 is finite.

◦ A system (N,M0) is safe, iff ∀ M ∈ [N,M0〉 ∀ p ∈ P :M(p) ≤ 1.

◦ A WF-system (N,Mi) with N = (P, T, F ) is sound, iff the short-circuit system

(N ′,Mi) is live and bounded.

Observe that in a sound WF-system, the initial marking Mi = [i] always can evolve to

the final marking Mo = [o], at which no transition is enabled. If a WF-system is not

sound, we also refer to it as an unsound system. Note that we refer to a WF-net N as

being sound or unsound, if the WF-system (N,Mi) is sound or, respectively, unsound.
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In our subsequent discussions we shall extensively refer to parts of nets. Therefore,

we formally define the notions of a subnet and path of a net. Let N ′ = (P ′, T ′, F ′) and

N = (P, T, F ) be two nets, and let P ′ ⊆ P , T ′ ⊆ T . N ′ is a subnet of N , denoted by

N ′ ⊆ N , iff F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)). N ′ is a partial subnet of N , denoted by

N ′ ≤ N , iff F ′ ⊆ F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)). A path of N is a non-empty sequence

〈x1, . . . , xk〉 of nodes, xi ∈ P ∪ T , 1 ≤ i ≤ k and k > 1, denoted by π(x1, xk), which

satisfies (x1, x2), . . . , (xk−1, xk) ∈ F . We write xi ∈ π, if xi is on the path π. A subpath

π′ of a path π is a subsequence of π.

3 Stepwise Connectivity-Based Verification of WF-nets

In this section, we study the relation between the connectivity of short-circuit nets and

the correctness, i.e., soundness, of WF-nets. The notion of a WF-net is in a tight relation

with the class of strongly connected Petri nets. We emphasize this relation in Section 3.1.

Afterwards, in Section 3.2, we present basic connectivity-related properties of nets.

Then, in Sections 3.3 to 3.5, we investigate how the connectivity of a short-circuit

net can be used for reasoning about the soundness of the WF-net. We perform the

stepwise connectivity-based decomposition of a short-circuit net and derive conclusions

about the soundness of the corresponding WF-net. At the same time, we argue about

the computational complexity of algorithms that support the conclusions. For each

decomposition step we discuss techniques to perform decompositions, methods to

verify soundness, and feedback that can be provided to process analysts in cases of

unsoundness.

3.1 Strong Connectivity of WF-nets

The structure of a Petri net (P, T, F ) is defined by the graph (X,F ). There is an

interesting observation that relates the behavioral characteristics of a net with the

connectivity of the underlying graph. The strong connectedness theorem [16] states that

a net N for which there exists a marking M0, such that (N,M0) is live and bounded,

is strongly connected. In other words, strong connectedness of a short-circuit net is a

mandatory condition for soundness of the corresponding WF-net, as the latter is traced

back to liveness and boundedness of the respective short-circuit net. A net is strongly

connected, if there exist a directed path from each node in the net to each other node.

Though implied by soundness, the requirement of strong connectedness of short-circuit

nets is explicitly stated in the definition of WF-nets. Note that strong connectedness of

a net can be tested in the time linear to the size of the net, viz., O(|X|+ |F |), by using

Tarjan’s algorithm for discovery of strongly connected components of a graph, cf., [17].

In the following, we examine connectivity-related properties of short-circuit nets,

those not required by the definition, which can be used to explain soundness of WF-nets.

3.2 Connectivity of WF-nets

In this section, we briefly discuss connectivity-related properties of nets. We narrow

down our discussion to those properties which we shall check later on short-circuit nets

to derive conclusions about the soundness of the WF-nets. Detailed discussions and

extensive examples will be provided as we proceed with the presentation of main results.

Two nodes x and y of a net are connected, if there is a path between x and y. Note

that here we refer to a path that ignores directions of flow arcs. A net is connected, if

every pair of distinct nodes of the net is connected. k-connectivity is the generalization

of the connectivity property of a net. A net is k-connected if there exists no set of
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k − 1 nodes, whose removal renders the net disconnected, i.e., there is no path between

some pair of nodes in the net. The set of nodes whose removal disconnects the net is

called a separating (k− 1)-set of the net. Separating 1- and 2-sets are called cutvertices

and separation pairs, while 1-, 2-, and 3-connected nets are referred to as connected,

biconnected, and triconnected, respectively. The connectivity of a net is the largest k for

which the net is k-connected.

t3t1
oi p1

t2

t*

Fig. 1 A short-circuit net

Fig. 1 shows a short-circuit net. Short-circuit nets are

strongly connected and, thus, are connected. However,

a short-circuit net must not be k-connected, where k is

larger than one. For instance, the net in Fig. 1 contains

cutvertex p1 (highlighted with grey background). Thus,

the net in the figure is not biconnected. Separation sets

of a net can be used to decompose the net into subnets,

or components, of a higher connectivity. The removal of

the only cutvertex in Fig. 1 causes two subnets, one induced by nodes {p1, t2} and the

other by nodes {i, t1, p1, t3, o, t
⋆}. Both these subnets contain no cutvertices and, hence,

are biconnected. In the subsequent sections, we study how separating sets and subnets

induced by these sets can be used to decide on soundness of WF-nets.

3.3 The Biconnected Step

As already explained in the previous section, short-circuit nets are connected, but not

necessarily biconnected. This section shows how the soundness verification of a WF-net

can be broken down into checks of biconnected components of its short-circuit net.

3.3.1 Biconnected Decomposition of a WF-net

The classic sequential algorithm for computing biconnected components in a connected

graph, proposed in [18], runs in linear time. Let (X,F ) be a connected graph, then the

algorithm requires time and space proportional to max(|X|, |F |). Biconnected compo-

nents can be arranged in a tree structure—the tree of the biconnected components. The

tree has two types of nodes that refer either to cutvertices or to biconnected components.

Edges of the tree connect cutvertices with associated biconnected components, i.e.,

there is an edge between a cutvertex and a biconnected component, if and only if

the biconnected component contains the cutvertex. The number of nodes in the tree

is O(|X|) and, hence, the space required to store the tree and all the biconnected

components is O(max(|X|, |F |)), i.e., linear to the size of the original graph. Such a

tree is also known as BC-tree, cf., [19].

The results obtained for graphs can be transferred to WF-nets. A biconnected subnet

is a biconnected component of a short-circuit net. The tree of the biconnected subnets,

or the 2-WF-tree, is the tree of the biconnected components of a short-circuit net.

Definition 5 (The tree of the biconnected subnets)

Let N = (P, T, F ) be a WF-net and let N ′ be its short-circuit net with the extra

transition t∗. The tree of the biconnected subnets, or the 2-WF-tree, of N is a tuple

T 2
N = (B, C, ρ, η,△), where:

◦ B is a set of all biconnected subnets and C is a set of all cutvertices of N ′,

◦ ρ = (Pρ, Tρ, Fρ) ∈ B is the root of T 2
N , iff t∗ ∈ Tρ,

◦ η : B → P(B) assigns to each biconnected subnet its child biconnected subnets, for

subnet b1 ∈ B, b1 is a parent of b2 ∈ B and b2 is a child of b1, iff b2 ∈ η(b1),

◦ △⊆ B × C × B, (b1, c, b2) ∈ △, iff c is shared by b1 and b2, and b2 ∈ η(b1).
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Definition 5 captures the result of applying an algorithm for computing biconnected

components on a short-circuit net. Note that we deliberately choose a biconnected

subnet that contains the extra transition t∗ as the root of the 2-WF-tree; there is always

one such subnet. Function η must be defined iteratively starting from the root subnet,

i.e., subnet ρ has no parent, each child subnet of the root subnet shares a cutvertex

with it, each child subnet of the root is a parent of subnets that it shares a cutvertex

with (except its parent), etc.

t2t1

t4t6

p2

t5

p1

t7t8
p3

o

t3
p4

t9

i

t*

(a)

t2t1
p1

o

t3
p4i

t*

p4

t9t4t6

p2

t5

p1

p1

t7t8
p3

(A1)

(A2)

(A3)

(A4)

(b)

p1 p4

A1

A2 A3 A4

(c)

Fig. 2 (a) A short-circuit net, (b) biconnected subnets, and (c) the 2-WF-tree

Fig. 2 exemplifies the biconnected decomposition of a WF-net: Fig. 2(a) shows a

short-circuit net. The net has two place cutvertices: p1 and p4; both are highlighted

with grey background. The cutvertices induce four biconnected subnets A1–A4, cf.,

Fig. 2(b). Finally, Fig. 2(c) organizes the subnets in the 2-WF-tree with the root node

that corresponds to the biconnected subnet A1.

Each biconnected subnet of a WF-net can be seen as a self-contained part of the

whole net which itself can be formalized as a WF-net, referred to as a biconnected

sub-WF-net of the original WF-net.

Definition 6 (Biconnected sub-WF-net)

LetN = (P, T, F ) be a WF-net, T 2
N = (B, C, ρ, η,△) its 2-WF-tree, and b = (Pb, Tb, Fb) ∈

B its biconnected subnet. A biconnected sub-WF-net of N , denoted by b⋆, b⋆ =

(Pb⋆ , Tb⋆ , Fb⋆), is a net, such that:

◦ If b = ρ, then Pb⋆ = Pb, Tb⋆ = Tb ∩ T , and Fb⋆ = Fb ∩ F .

◦ If b 6= ρ and a ∈ B, c ∈ C are such that there exists (a, c, b) ∈ △, then

− if c ∈ P , then Pb⋆ = (Pb\{c})∪{i, o}, Tb⋆ = Tb, and Fb⋆ = {(x1, x2) ∈ Fb | x1 6=

c ∧ x2 6= c} ∪ {(i, x) ∈ {i} × Tb | (c, x) ∈ Fb} ∪ {(x, o) ∈ Tb × {o} | (x, c) ∈ Fb}.

− if c ∈ T , then Pb⋆ = Pb∪{i, o}, Tb⋆ = (Tb \{c})∪{ti, to}, and Fb⋆ = {(x1, x2) ∈

Fb | x1 6= c ∧ x2 6= c} ∪ {(i, ti), (to, o)} ∪ {(ti, x) ∈ {ti} × Pb | (c, x) ∈ Fb} ∪

{(x, to) ∈ Pb × {to} | (x, c) ∈ Fb}.

t2t1
p1

o

t3
p4

i

t5

t4 p2

t6
oi

t8t7
p3

i o

t9
i o

(A1)

(A2)

(A3)

(A4)

Fig. 3 Biconnected sub-WF-nets

A WF-net that corresponds to a subtree of b,

denoted by b△, can be obtained by merging

(at shared cutvertices) sub-WF-net b⋆ with all

subnets that are descendants of b in the 2-WF-

tree. Biconnected sub-WF-nets are also referred

to as biconnected WF-nets.

Fig. 3 presents sub-WF-nets of the short-

circuit net that is given in Fig. 2(a). The sub-

WF-nets correspond to the biconnected subnets

in Fig. 2(b). Sub-WF-net A1 is obtained from
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the corresponding biconnected subnet by ignoring transition t∗ and arcs that are incident

to t∗. In the case when a biconnected subnet is not the root of the 2-WF-tree, cf.,

Fig. 2(c), the corresponding sub-WF-net can be obtained as follows: The cutvertex

that corresponds to the parent node of the biconnected subnet in the 2-WF-tree is

removed from the subnet and two fresh places are added; these are source place i and

sink place o. If the removed cutvertex was a place, then all its outgoing arcs get rerouted

to originate from i, whereas all its incoming arcs are rerouted to terminate at o. If the

removed cutvertex was a transition, then two additional fresh transitions are added;

these are transitions ti and to. Afterwards, the flow relation is extended, such that ti is

put in the postset of i, while to is put in the preset of o. Finally, outgoing arcs of the

removed cutvertex get rerouted to originate from ti, whereas all the incoming arcs of

the removed cutvertex are rerouted to terminate at to.

Construction of a WF-net that corresponds to a subtree in the 2-WF-tree is

supported by two types of transformations, viz., refinements, of nets.

Definition 7 (Self-loop place refinement, Transition refinement)

◦ Let N1 = (P1, T1, F1) be a net, p ∈ P1 a place. A self-loop place refinement of p

yields a net N2 = (P1, T1 ∪ {tp}, F1 ∪ {(p, tp), (tp, p)}), denoted by N1[p].

◦ Let N1 = (P1, T1, F1) be a net, N2 = (P2, T2, F2) a WF-net with source i and sink

o, T1 ∩ T2 = ∅, P1 ∩ P2 = ∅, and t ∈ T1. A transition refinement of t by N2 yields

a net N3 = (P3, T3, F3), denoted by N1[t/N2], such that:

− P3 = P1 ∪ (P2 \ {i, o}), T3 = (T1 \ {t}) ∪ T2, and

− F3 = {(x1, x2) ∈ F1|x1 6= t ∧ x2 6= t} ∪ {(x1, x2) ∈ F2|{x1, x2} ∩ {i, o}} ∪

{(x1, x2) ∈ P1 × T2 | (x1, t) ∈ F1 ∧ (i, x2) ∈ F2}

∪ {(x1, x2) ∈ T2 × P1 | (t, x2) ∈ F1 ∧ (x1, o) ∈ F2}.

A self-loop place refinement has been introduced in [20], while the concept of transition

refinement is borrowed from [21,22]. Fig. 4(a) shows the result of the self-loop place

refinement of place p1 in WF-net A1 in Fig. 3, whereas Fig. 4(b) depicts the result of

the transition refinement of tp1 in the WF-net in Fig. 4(a) by WF-net A2 in Fig. 3.

t2t1
p1

o

t3
p4

i

tp1

(a)

t2t1

t4t6

p2

t5

p1

o

t3
p4

i

(b)

Fig. 4 (a) A self-loop place refinement of place p1 in WF-net A1 in Fig. 3, i.e., A1[p1], and
(b) a transition tp1 refinement in (a) by WF-net A2 in Fig. 3, i.e., (A1[p1])[tp1/A2]

3.3.2 Soundness Verification Based on Biconnected Decomposition

The biconnected decomposition of a WF-net can be related to the soundness verification

in two ways: First, the type of the cutvertices can be exploited to detect unsoundness.

Second, we show that the biconnected decomposition can be used to modularize the

soundness verification problem. The following lemma shows that a WF-net can be

sound only if all the cutvertices of the corresponding short-circuit net are places.

Lemma 1 Let (N,Mi), N = (P, T, F ), be a WF-system and N ′ be the short-circuit

net of N . If t ∈ T is a cutvertex of N ′, then (N,Mi) is not sound.
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Proof Because t is a cutvertex of N ′, there exists p′ ∈ •t, p′ 6= i, such that t is on every

path π(i, p′). We show now by induction that t is never enabled, i.e., for every marking

M ∈ [N,Mi〉 holds ¬(N,M)[t〉.

base: ¬(N,Mi)[t〉 as Mi(p
′) = 0, i.e., t is not enabled by the initial marking.

step: Let M ′ be a marking reachable from Mi by a firing sequence σ that does not

contain t, i.e., t was never enabled. Let t′ ∈ T be such that (N,M ′)[t′〉. Assume

that t′ = t, then M ′(p′) ≥ 1. If M ′(p′) ≥ 1, then σ contains all the transitions of

some path π(i, p′) and, hence, contains t. We have reached the contradiction and,

therefore, t′ 6= t.

As t is never enabled, (N ′,Mi) is not live. Thus, (N,Mi) is not sound. ⊓⊔

According to Lemma 1, a transition cutvertex hints at unsoundness of the net. In

case all cutvertices of a short-circuit net are places, the verification procedure can be

broken down into checks of biconnected subnets of the short-circuit net. It is known

that the self-loop place refinement preserves liveness, boundedness, and safeness of the

net, cf., [20]. Therefore, soundness verification can be organized using the biconnected

sub-WF-nets of a WF-net and the net transformations from Definition 7. That is, in

the class of safe systems, the soundness of a system is closely related to the soundness

of its biconnected sub-WF-nets.

Theorem 1 Each biconnected sub-WF-net of a WF-net is safe and sound, iff the WF-

net is safe and sound.

Proof Let N be a WF-net and let T 2
N = (B, C, ρ, η,△) be the 2-WF-tree of N .

(⇒) By structural induction on the tree of the biconnected subnets.

base: If T 2
N contains only one biconnected subnet, i.e., |B| = 1, then N is a biconnected

WF-net. Obviously, the claim holds.

step: Let b ∈ B be a biconnected subnet. Suppose that the claim holds for all a△ such

that a ∈ η(b). We show by induction that the claim is also true for b△.

b⋆ is a biconnected sub-WF-net of N and, hence, is safe and sound. Let a ∈ η(b) and

c ∈ C be such that (b, c, a) ∈ △. A WF-net b′ = b⋆[c] with a self-loop transition tc is

safe and sound. A WF-net b′[tc/a
△] is safe and sound, cf., statement 4 of Theorem

3 in [22]. Thus, after refining b⋆ with all the biconnected WF-nets that correspond

to subnets from η(b), one obtains a safe and sound WF-net that is equal to b△.

As ρ△ is equal to N , the claim holds.

(⇐) The claim trivially holds by following (⇒) in the reverse direction. ⊓⊔

Therefore, it suffices to show that at least one biconnected sub-WF-net is not safe and

sound in order to conclude that the WF-net is not safe and sound. As biconnected

sub-WF-nets can be computed in time linear to the size of a net, the biconnected

decomposition step does not add to the overall complexity of soundness verification.

3.3.3 Feedback on Unsoundness

We illustrate the feedback given by our verification approach by the exemplary model

that is depicted in Fig. 5, along with its biconnected decomposition and the biconnected

sub-WF-nets. Following on the results presented in the previous section, the first check

to verify soundness refers to the type of the cutvertices. A transition cutvertex hints

at unsoundness of the net and, therefore, constitutes valuable diagnostic information.

For our example, we see that there is one transition cutvertex, viz., transition t1. This

transition is returned to a process analyst as a cause of unsoundness of the WF-net.



10

t1

t4t3

p3

t5

p1

o

t2
i

t*

p2

p5 p4

t6

(a)

t1
p1

o

t2
i

t*

t4t3

p3

t5

p1

p2

t1

p5 p4

t6

(A1)

(A3)

(A2)

(b)

p1

A1

A3A2

t1

(c)

t2t1
p1 oi

t5

t3
p2

t4
oi

(A1)

(A3)

t6ti
p4 o

to
p5i

(A2)

p3

(d)

Fig. 5 (a) A short-circuit net of an unsound WF-net, (b) biconnected subnets, (c) the 2-WF-
tree, (d) the biconnected sub-WF-nets

Apparently, this transition is never enabled, as the marking of one of the places in its

preset depends on the firing of the very same transition. Hence, resolution of unsoundness

has to consider the condition for enabling of transition t1.

Second, we have shown that the soundness verification procedure can be broken

down into checks of biconnected subnets of the short-circuit net. Once an unsound

biconnected sub-WF-net is identified, it is presented to the process analyst. Again, this

constitutes valuable diagnostic information. The cause of unsoundness is localized in a

certain subnet and, thus, separated from the correct remaining parts of the WF-net.

Referring to our example in Fig. 5, we see that the biconnected subnet (A3) induced

by the cutvertex p1 is not sound. This subnet introduces an additional cause for

unsoundness. The resolution of unsoundness also has to focus on this particular subnet.

3.4 The Triconnected Step

This section discusses connectivity specific aspects of the soundness verification of

biconnected WF-nets. The biconnected WF-nets contain no cutvertices; they may,

however, contain separation pairs that induce triconnected subnets.

3.4.1 Triconnected Decomposition of a Biconnected WF-net

The sequential algorithm for computing triconnected components in a biconnected

graph proposed in [23] runs in linear time. In [24], the authors discuss implementation

aspects of the algorithm. Let (X,F ) be a biconnected graph, then the algorithm requires

time and space proportional to max(|X|, |F |). The triconnected components are used

in [25] for analyzing the structure of directed graphs; the triconnected components form

a hierarchy of single-entry-single-exit (SESE) subgraphs of a directed graph. In [26,

27], the authors propose a technique, viz., the Refined Process Structure Tree (RPST),

that computes a hierarchy of SESE subgraphs in the general case when the graph

contains vertices with multiple incoming and multiple outgoing edges. The subgraphs

of the RPST are canonical, i.e., the RPST describes all the subgraphs that do not

pairwise overlap on the sets of edges. In [28], the authors explain the relation between

the triconnected components of the normalized version of the graph, where each vertex

with multiple incoming and multiple outgoing edges is split into two, and its RPST.

That is, the triconnected components of a normalized graph define its RPST.

In the following, we investigate the triconnected components of the normalized

biconnected WF-nets. Every net can be normalized.
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Fig. 6 (a) A short-circuit net, and (b) its normalized net

Definition 8 (Normalized net)

Let N = (P, T, F ) be a net.

◦ A splitting of p ∈ P is applicable, iff | • p| > 1 ∧ |p • | > 1. The application results

in a net N ′ = (P ′, T ′, F ′), where P ′ = ((P \ p) ∪ {∗p, p∗}, T ′ = T ∪ {tp}, and

F ′ = (F \ {(x1, x2) ∈ F | x1 = p ∨ x2 = p}) ∪ {(t, ∗p) ∈ T × {∗p} | (t, p) ∈

F} ∪ {(p∗, t) ∈ {p∗} × T | (p, t) ∈ F} ∪ {(∗p, tp), (tp, p∗)}).

◦ A splitting of t ∈ T is applicable, iff | • t| > 1 ∧ |t • | > 1. The application results

in a net N ′ = (P ′, T ′, F ′), where P ′ = P ∪ {pt}, T
′ = ((T \ t) ∪ {∗t, t∗}, and

F ′ = (F \ {(x1, x2) ∈ F | x1 = t ∨ x2 = t}) ∪ {(p, ∗t) ∈ P × {∗t} | (p, t) ∈

F} ∪ {(t∗, p) ∈ {t∗} × P | (t, p) ∈ F} ∪ {(∗t, pt), (pt, t∗)}).

◦ N is normalized, iff N has no applicable splitting.

Application of a splitting preserves liveness, safeness, and boundedness of a net, cf., [20].

The order of splittings has no effect on the final result. Fig. 6(a) shows the short-circuit

net of a biconnected WF-net. The net has an applicable splitting of place p1. Thus, it

is not normalized. Fig. 6(b) shows the result of splitting p1. As there are no further

splittings applicable, the net in Fig. 6(b) is normalized.

Every separation pair of the triconnected component of the normalized short-circuit

net induces a canonical triconnected subnet of the corresponding WF-net.

Definition 9 (Boundary, Entry, Exit, Triconnected subnet)

Let N = (P, T, F ) be a biconnected WF-net with source place i and sink place o. Let

ω = (Pω, Tω, Fω) be a subnet of N , and let x ∈ Xω be a node of ω.

◦ x is a boundary node of ω, iff ∃ f ∈ in(x) ∪ out(x) : f /∈ Fω.

◦ x is an entry of ω, iff in(x) ∩ Fω = ∅ or out(x) ⊆ Fω.

◦ x is an exit of ω, iff out(x) ∩ Fω = ∅ or in(x) ⊆ Fω.

◦ ω is a triconnected subnet of N , iff ω has exactly two boundary nodes, one entry

and one exit, denoted by ω⊳ and ω⊲, respectively.

◦ ω is a canonical triconnected subnet in a set of all triconnected subnets Σ of N , iff

∀ γ = (Pγ , Tγ , Fγ) ∈ Σ : ω 6= γ ⇒ (Fω ∩ Fγ = ∅) ∨ (Fω ⊂ Fγ) ∨ (Fγ ⊂ Fω).

Note that we speak of PP-,TT -,PT -,TP-bordered triconnected subnets, depending on

the type (place or transition) of the entry and exit of the respective subnet.

Fig. 7 shows two of many triconnected subnets of the net in Fig. 6(b). Subnet B2 is

induced by separation pair {p4, p5}, whereas subnet R1 is induced by {∗p1, p3}. p4 is

the entry and p5 is the exit of B2. Similarly, ∗p1 and p3 are the entry and exit of R1.
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Fig. 7 Triconnected subnets

There exist four structural classes of triconnected

subnets that are adopted from classes of the triconnected

components [25,26,27,28]: Each flow defines a subnet

of a trivial class, e.g., (p4, t6) in B2. A subnet is a

polygon if it decomposes into a sequence of subnets

where the exit of a subnet is the entry of the next

subnet in the sequence, e.g., two trivial subnets (p4, t6)

and (t6, p5) form a polygon inside of B2. A subnet is

a bond if it decomposes into a set of subnets that share

boundary nodes, e.g., two polygons {(p4, t6), (t6, p5)}

and {(p5, t7), (t7, p4)} share boundary nodes {p4, p5} and form bond B2. If a subnet

cannot be classified as trivial, polygon, or bond, it is said to be rigid, e.g., subnet R1.

Note that names of subnets hint at their structural class.

Definition 10 (The tree of the triconnected subnets)

Let N = (P, T, F ) be a normalized biconnected WF-net and let N ′ be its short-circuit

net with the extra transition t∗. The tree of the triconnected subnets, or the 3-WF-tree,

of N is a tuple T 3
N = (Ω,ψ, χ, τ), where:

◦ Ω is a set of all canonical triconnected subnets of N ′,

◦ ψ = (Pψ, Tψ, Fψ) ∈ Ω is the root of T 3
N , iff ∄ ω = (Pω, Tω, Fω) ∈ Ω : Fψ ⊂ Fω,

◦ χ : Ω → P(Ω) assigns to triconnected subnet its child triconnected subnets, for

subnet ω1 ∈ Ω, ω1 is a parent of ω2 ∈ Ω and ω2 is a child of ω1, iff ω2 ∈ χ(ω1),

◦ τ : Ω → {trivial, polygon, bond, rigid} assigns a class to a subnet.

The tree of the triconnected subnets of a biconnected WF-net is defined by the RPST

of its normalized short-circuit net and, thus, contains all canonical subnets of the

net, cf., [28]. Trivial subnets are leaves in 3-WF-trees. Any polygon containing other

polygons or bond containing other bonds are recognized as a single polygon or bond,

respectively, cf., [25]. For our purposes, we further classify polygon and bond subnets: A

subnet ω ∈ Ω is a simple polygon, iff τ(ω) = polygon and ∀ α ∈ χ(ω) : τ(α) = trivial. A

subnet ω ∈ Ω is a sequence, iff the subnet is a simple polygon or trivial. Let h : Ω → N0

assign heights to triconnected subnets, i.e., the length of the longest downward path

from the corresponding node in the 3-WF-tree to a node that corresponds to a trivial

subnet. A subnet ω ∈ Ω is a simple bond, iff τ(ω) = bond and h(ω) ≤ 2. Finally, a

bond ω ∈ Ω is a loop, iff ∃ γ ∈ χ(ω) : γ⊲ = ω⊳.
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Fig. 8 (a) A normalized net and its triconnected subnets, and (b) the 3-WF-tree
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Fig. 8 exemplifies the 3-WF-tree: Fig. 8(a) shows the net in Fig. 6(b) along with its

canonical triconnected subnets. Each triconnected subnet is defined by the flow that

is inside or intersects the corresponding box with the dotted line. Fig. 8(b) gives an

alternative representation of the 3-WF-tree, i.e., a tree specified by the containment

hierarchy of subnets. Each node in the tree is annotated with the pair of nodes of the net,

where the first node is the entry and the second node is the exit of the corresponding

subnet.

The 3-WF-tree specifies a compositional structure of the net. The net in Fig. 8(a)

is composed of the top level polygon P1 with entry i and exit o. Polygon P1 contains

bond B1 with entry t1 and exit t10. Observe that P1 also contains two trivial subnets:

(i, t1) and (t10, o). Note that for simplicity reasons, we do not explicitly visualize trivial

and sequence subnets. Bond B1 contains two polygons that share boundary nodes t1
(an entry) and t10 (an exit) with the bond, where P2 corresponds to the upper branch

and P3—to the lower one. Bonds B2 and B3 are simple bonds, both composed of two

sequences. Moreover, bond B2 is also a loop. The net contains one rigid subnet—R1.

A triconnected subnet contains all the triconnected subnets, as well as the behavior

that they specify, downwards in the hierarchy of the 3-WF-tree. However, the behavior

induced by a triconnected subnet can be made explicit by abstracting the behavior of

all its descendant subnets.

Definition 11 (Abstraction)

Let N = (P, T, F ) be a normalized biconnected WF-net. Let T 3
N = (Ω,ψ, χ, τ) be its

3-WF-tree, ω = (Pω, Tω, Fω) ∈ Ω, and γ = (Pγ , Tγ , Fγ) ∈ χ(ω). An abstraction of γ in

ω by transition tγ results in a subnet ω⋆γ , such that:

◦ If γ⊳ ∈ P ∧ γ⊲ ∈ P , then ω⋆γ = (Pω \ (Pγ \ {γ⊳, γ⊲}), (Tω \ Tγ) ∪ {tγ}, (Fω \ Fγ) ∪

{(γ⊳, t
γ), (tγ , γ⊲)}).

◦ If γ⊳ ∈ P ∧ γ⊲ ∈ T , then ω⋆γ = ((Pω \ (Pγ \ {γ⊳})) ∪ {pγ}, (Tω \ (Tγ \ {γ⊲})) ∪

{tγ}, (Fω \ Fγ) ∪ {(γ⊳, t
γ), (tγ , pγ), (pγ , γ⊲)}).

◦ If γ⊳ ∈ T ∧ γ⊲ ∈ P , then ω⋆γ = ((Pω \ (Pγ \ {γ⊲})) ∪ {pγ}, (Tω \ (Tγ \ {γ⊳})) ∪

{tγ}, (Fω \ Fγ) ∪ {(γ⊳, p
γ), (pγ , tγ), (tγ , γ⊲)}).

◦ If γ⊳ ∈ T ∧ γ⊲ ∈ T , then ω⋆γ = ((Pω \ Pγ) ∪ {p∗γ , pγ∗}, (Tω \ (Tγ \ {γ⊳, γ⊲})) ∪

{tγ}, (Fω \ Fγ) ∪ {(γ⊳, p
∗γ), (p∗γ , tγ), (tγ , pγ∗), (pγ∗, γ⊲)}).

An abstraction of a child subnet results in a net where the child subnet is replaced by

a fresh transition. A triconnected (sub-)WF-net of N , denoted by ω≀, can be obtained

from ω by abstracting all its non-trivial child subnets, introducing a path from a fresh

source place i leading to ω⊳, possibly through a transition, and introducing a path from

ω⊲ to a fresh sink place o, possibly through a transition.
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Fig. 9 Triconnected sub-WF-nets: (a) B1, and (b) R1

Fig. 9 shows two triconnected sub-WF-nets that correspond to subnets B1 and

R1 of the net in Fig. 8(a). Note that the time to compute and space to store all

the triconnected sub-WF-nets of a biconnected WF-net is linear to the size of the

net, cf., [28].
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3.4.2 Soundness Verification Based on Triconnected Decomposition

In the following, we discuss how the triconnected sub(-WF-)nets can be used to judge if

a net behaves correctly. Similar to Section 3.3.2, we start by characterizing separating

sets of a net. However, in this case the sets are separation pairs. First, we identify

simple bonds that hint at a WF-net being not sound.

Lemma 2 (Pruning) Let (N,Mi), N = (P, T, F ), be a biconnected WF-system. Let

T 3
N = (Ω,ψ, χ, τ) be its 3-WF-tree, with a simple bond ω ∈ Ω. If ω is neither PP-, nor

non-loop TT-, nor non-loop TP-bordered, then (N,Mi) is not sound.

Proof Because ω is a simple bond, it holds that all child subnets of ω are sequences.

There exist eight classes of simple bonds that are based on two criteria: is the bond a

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

(i) (ii)

Fig. 10 Simple bond classes

loop (ii) or not (i), and is the bond (a) PP-, (b)

PT-, (c) TP-, or (d) TT-bordered. Fig. 10 visualizes

all eight classes of simple bonds. In the figure, each

directed arc stands for n ∈ N sequence subnets with

entries and exits that correspond to the source and

target of the arc. Note that we always assume the

left node of a bond to be its entry node. Then, it

trivially holds: If ω is of class (i.b), (ii.c), or (ii.d),

then there is a dead transition in the WF-system.

If ω is of class (ii.b), then there is a live-lock in the

WF-system. In both cases, the WF-system is not sound. Moreover, if at least one child

subnet of ω is trivial, then ω cannot be of class (i.a), (i.d), (ii.a), and (ii.d), due to the

bipartite property of Petri nets. ⊓⊔

A biconnected WF-system is said to be pruned, if it is not identified by Lemma 2 as

unsound. Pruning is applicable for general biconnected WF-systems, but considers solely

simple bonds. For the class of biconnected free-choice WF-nets, we can even provide a

complete characterization of bonds. This is due to the fact that the free-choice property

implies a tight coupling of the syntax and semantics for sound WF-systems, cf., [22,29].

In order to present the results, we recall some definitions from [30].

Definition 12 (Circuit, Handle, Bridge)

Let N = (P, T, F ) be a net.

◦ A path π(x1, xk) of N is a circuit, iff (xk, x1) ∈ F and no node occurs more than

once in the path.

◦ For a partial subnet N ′ = (P ′, T ′, F ′) of N , a path π(x1, xk) (where all xi are

distinct) of N is a handle of N ′, iff π ∩ (P ′ ∪ T ′) = {x1, xk}.

◦ For two partial subnets N ′ = (P ′, T ′, F ′), N ′′ = (P ′′, T ′′, F ′′) of N , a path π(x1, xk)

(where all xi are distinct) of N is a bridge from N ′ to N ′′, iff π ∩ (P ′ ∪ T ′) = {x1}

and π ∩ (P ′′ ∪ T ′′) = {xk}.

Note that we speak of PP-,TT -,PT -,TP - handles and bridges, depending on the type

(place or transition) of the start and the end node of the corresponding path. Finally, the

following two lemmas show that a bond of a sound biconnected free-choice WF-system

is either place or transition bordered, and that each loop is place bordered. While

we introduced the two lemmas in previous work [14], we recall them for the sake of

completeness of the presented approach.
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Lemma 3 Let (N,Mi), N = (P, T, F ), be a biconnected free-choice WF-system. Let

T 3
N = (Ω,ψ, χ, τ) be its 3-WF-tree, with a bond ω ∈ Ω. If ω is TP-bordered or PT-

bordered, then (N,Mi) is not sound.

Proof Assume ω is a bond with {p, t} boundary nodes, p ∈ P and t ∈ T . There exists

a circuit Γ in N that contains {p, t}. Let Γω be a subpath of Γ inside ω. There exists a

child subnet γ of ω that contains Γω. A bond has k ≥ 2 child subnets, cf., [28,31]. Let

ϑ be a child of ω, ϑ 6= γ. We distinguish two cases:

◦ Let H be a path from p to t contained in ϑ. H is a PT-handle of Γ . In a live

and bounded free-choice system, H is bridged to Γω through a TP-bridge K, cf.,

Proposition 4.2 in [30]. This implies that ϑ = γ; otherwise bond ω contains path K

that is not inside of a single child subnet, cf., [31,28].

◦ Let H be a path from t to p contained in ϑ. H is a TP-handle of Γ . In a live and

bounded free-choice system, no circuit has TP-handles, cf., Proposition 4.1 in [30].

Thus, (N,Mi) is not a sound free-choice WF-system.

Therefore, ω either has a single child subnet, in which case ω is not a bond, or (N,Mi)

is not a sound free-choice WF-system. ⊓⊔

Lemma 4 Let (N,Mi), N = (P, T, F ), be a biconnected free-choice WF-system. Let

T 3
N = (Ω,ψ, χ, τ) be its 3-WF-tree, with a loop ω ∈ Ω. If ω is TP-bordered, TT-bordered,

or PT-bordered, then (N,Mi) is not sound.

Proof Because of Lemma 3, ω is either place or transition bordered. Assume ω is

transition bordered. There exists a place p such that p ∈ •ω⊳∩Pω ,Mi(p) = 0. Transition

ω⊳ is enabled if there exists a marking M ∈ [(N,Mi)〉 with M(p) > 0. Since ω is a

connected subnet, for all t ∈ Tω \ {ω⊳, ω⊲} all edges are in ω, i.e., (in(t) ∪ out(t)) ⊆ Fω .

Thus, every path from i to p visits ω⊳. Thus, M(p) > 0 if ω⊳ has fired, was enabled

before. We reached a contradiction. Transition ω⊳ is never enabled and N is not live,

and hence, not sound. Since any loop is not transition bordered, it is place bordered

(Lemma 3). ⊓⊔

Finally, similar as in Section 3.3.2, we propose to organize the soundness verification of

biconnected WF-systems from individual checks of its sub-WF-nets, viz., triconnected

sub-WF-nets.

Theorem 2 Each triconnected sub-WF-net of a biconnected WF-net is safe and sound,

iff the WF-net is safe and sound.

Proof By structural induction on the tree of the triconnected subnets; analogous to the

proof of Theorem 1. ⊓⊔

It suffices to show that at least one of the triconnected sub-WF-nets of a biconnected

WF-net is not safe and sound in order to conclude that the net is not safe and sound.

The analysis discussed in this section can be performed in the time linear to the size of

a net and, hence, does not influence the overall complexity of soundness verification.
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3.4.3 Feedback on Unsoundness

We illustrate the feedback given by our approach for the exemplary workflow net depicted

together with its 3-WF-tree in Fig. 11. The workflow net is clearly not sound. A first

cause of unsoundness can already be identified in the pruning step. Bond B2 induced

by the separating pair (p4, t8) is a simple bond; all its child subnets are sequences.

Furthermore, this simple bond is PT-bordered. This, in turn, contradicts with Lemma 2.

Hence, the respective separating nodes, i.e., place p4 and transition t8, are returned to

a process analyst as diagnostic information.
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Fig. 11 (a) A short-circuit net of an unsound biconnected WF-net, (b) the 3-WF-tree, and (c)
the triconnected sub-WF-nets

Further on, the example given in Fig. 11 also illustrates the kind of feedback given

once an unsound triconnected subnet is identified. Here, the triconnected sub-WF-net

R1 induced by the separation pair (∗p1, p3) is not sound, cf., Fig. 11(c), which according

to Theorem 2 makes the whole net unsound. Observe that a net in Fig. 11(a) is free-

choice and, thus, must also be safe. Therefore, the triconnected sub-WF-net R1 is an

additional cause for unsoundness and has to be corrected in order to ensure soundness.

3.5 The 4-Connected Step

This section is devoted to soundness verification of rigid triconnected WF-nets. The

short-circuit net of a rigid WF-net contains no separation pairs. Still, the net might

contain separating sets composed of three nodes, which induce 4-connected components.

Those might be leveraged for soundness verification.

3.5.1 4-Connected Decomposition of a Triconnected WF-net

This section explains an approach for the discovery of the 4-connected subnets in a

triconnected WF-net. The authors are not aware of any existing dedicated algorithm

that can be directly applied. However, the discovery can be organized by employing

the technique from the triconnected step, cf., Section 3.4.1. The 4-connected subnets of

a triconnected WF-net are detected as follows: First, a node is removed from the net.

This step is referred to as one-step connectivity reduction. Afterwards, separation pairs

of the modified net are discovered by constructing its 3-WF-tree. The removed node

and each separation pair captured in the tree form a separating set composed of three

nodes. The procedure should be repeated for each node in the net.
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Definition 13 (One-step connectivity reduction)

Let N = (P, T, F ) be a rigid triconnected WF-net with source i and sink o.

◦ A node y ∈ X is a separation node, iff | • y|+ |y • | > 2.

◦ Given a separation node y ∈ X, a node z ∈ X is in the set of reduced nodes X(y), iff

z = y or there is a path π(y, z) or a path π(z, y) that does not contain a separation

node of N other than y.

◦ Given a separation node y ∈ X, the one-step connectivity reduction yields a subnet

Ny = (Py, Ty, Fy), such that Py = P \X(y) and Ty = T \X(y).

◦ A subnet Ny derived by one-step connectivity reduction of N by y is well-structured,

iff its short-circuit net N ′
y is strongly connected.

The one-step connectivity reduction is illustrated in Fig. 12. Fig. 12(a) depicts the

short-circuit net of a rigid WF-net, while Fig. 12(b) shows the short-circuit of a subnet

derived by one-step connectivity reduction by separation node p2. As the resulting net

is well-structured, its 3-WF-tree is computed, cf., Fig. 12(c).
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Fig. 12 (a) A short-circuit net of a rigid triconnected WF-net, (b) an exemplary one-step
connectivity reduction of (a), and (c) the 3-WF-tree of (b)

The well-structured subnets derived via one-step connectivity reduction can be

related to the structure of the original net.

Proposition 1 Let N be a rigid WF-net, N ′ its short-circuit net, and Nx a well-

structured subnet of N ′ derived via one-step connectivity reduction. Each bond subnet

of Nx contains a handle for a circuit in N ′.

Proof Let ω = (Pω, Tω, Fω) be a bond subnet of Nx. As Nx is well-structured, its short-

circuit net N ′
x is strongly connected. Hence, N ′

x has a circuit that, in turn, contains

ω⊳ and ω⊲. As ω is of type bond, it has at least two node-disjoint paths between ω⊳
and ω⊲, where node-disjoint paths are paths with only end nodes in common. One of

these paths is a subpath for the circuit in N ′
x, whereas the second one is its handle. It

trivially holds that the circuit is also the circuit in N ′. ⊓⊔

3.5.2 Soundness Verification Based on 4-Connected Decomposition

For the class of free-choice nets, the 4-connected decomposition can be used to check

mandatory conditions for the soundness of a rigid triconnected WF-net. Soundness of

a free-choice WF-net can be decided using the Rank Theorem [16], which relates the

well-formedness property (there exists a live and bounded marking for the net) to the

incidence matrix of the net. According to [32], well-formedness and, thus, soundness of a
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free-choice net can be decided in O(|P |2 · |T |) time. Still, the 4-connected decomposition

allows for more efficient checks of mandatory conditions for soundness. Consequently,

these checks might be applied before soundness is assessed based on the Rank Theorem.

The following lemma provides such a check by partial structural characterizations of

sound nets.

Lemma 5 Let (N,Mi) be a rigid free-choice WF-system and Nx a well-structured

subnet of N derived via one-step connectivity reduction. If Nx contains a bond that is

non-loop TP-bordered or loop PT-bordered, then (N,Mi) is not sound.

Proof Let ω = (Pω, Tω, Fω) be a bond subnet of Nx. According to Proposition 1, ω

induces a handle for a circuit in N . We distinguish two cases:

◦ ω is non-loop TP-bordered. Then, the handle induced by ω is a TP-handle.

◦ ω is loop PT-bordered. For ω⊳ we know that either in(ω⊳)∩Fω = ∅ or out(ω⊳) ⊆ Fω .

The former is not possible as ω is a loop. From the latter, it follows that there is

only one path π(ω⊳, ω⊲) in ω. Thus, the handle induced by ω for a circuit in N

(Proposition 1) is a path π(ω⊲, ω⊳), i.e., a path from the exit to the entry of ω. As

ω is PT-bordered, this path is a TP-handle.

In both cases, ω induces a TP-handle for a circuit in N . According to Proposition 4.1

in [30], no circuit of a live and bounded free-choice net has TP-handles. ⊓⊔

In the same vein, an acyclic rigid subnet has to meet a structural requirement in order to

be sound. The following lemma applies to all free-choice biconnected WF-nets and not

only to those derived via one-step connectivity reduction from a triconnected WF-net.

Lemma 6 Let (N,Mi) be a biconnected free-choice WF-system. If N contains an

acyclic rigid subnet that is TP-bordered, then (N,Mi) is not sound.

Proof Let ω = (Pω, Tω, Fω) be a rigid subnet of N that is TP-bordered. Then, there

is a circuit in the short-circuit net N ′ that contains both boundary nodes, ω⊳ ∈ T

and ω⊲ ∈ P . According to Menger’s theorem, cf., [33,34], there are two node-disjoint

undirected paths from ω⊳ to ω⊲. As ω is acyclic, all edges on these paths are directed

equally, yielding two paths π(ω⊳, ω⊲). Thus, one of these paths is a TP-handle of the

subnet containing the circuit. According to Proposition 4.1 in [30], no circuit of a live

and bounded free-choice net has TP-handles. ⊓⊔

The application of the 4-connected decomposition allows for checking the mandatory

conditions for soundness of a rigid free-choice WF-net in O(|X|2) time, where X are

nodes of the net. For each separation node in a rigid free-choice WF-net, we apply a

one-step connectivity reduction and derive the respective 4-connected components in

linear time. For these components, Lemmas 5 and 6 can be checked in linear time as

well. Consequently, this technique can be seen as a preliminary step that is applied

before the more costly assessment of soundness based on the Rank Theorem.

3.5.3 Feedback on Unsoundness

We illustrate the feedback given in case unsoundness is detected by 4-connected decom-

position with an example. Fig. 13 depicts the short-circuit net of a rigid triconnected

WF-net similar to the one introduced above in Fig. 12. However, the net depicted in

Fig. 13(a) is not sound. The cause for unsoundness is detected as follows: Applying

the one-step connectivity reduction by separation node p2 leads to the well-structured

WF-net depicted in Fig. 13(b). For this subnet, in turn, the triconnected decomposition
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is applied, which results in the 3-WF-tree illustrated in 13(c). The 3-WF-tree reveals

that bond B2 is non-loop TP-bordered. According to Lemma 5, such a bond violates

a mandatory condition for soundness of the WF-net. As diagnostic information, the

respective handle induced by this bond is presented to the process analyst. That is, the

two paths π(t5, p7), one directly between the two nodes and one via the nodes p6, t6, p8,

and t7, identify the cause of the unsoundness.
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Fig. 13 (a) An unsound short-circuit net of a rigid triconnected WF-net, (b) an exemplary
one-step connectivity reduction of (a), and (c) the 3-WF-tree of (b)

Feedback on unsoundness detected based on Lemma 6 can be provided in a similar

way. The entry and exit of an acyclic TP-bordered rigid subnet are cause of unsoundness

which must be corrected in order to ensure soundness. In fact, the WF-net in Fig. 13(a)

contains a single TP-bordered rigid subnet with entry t1 and exit p5. However, the

subnet is cyclic and, thus, in this case does not hint at unsoundness of the WF-net.

4 Application

This section shows how the results presented in Section 3 can be applied for the purpose

of soundness verification. Algorithm 1 formalizes the verification procedure that is

obtained by integrating the individual results proposed in Sections 3.3 to 3.5. The

algorithm specifies a predicate which takes a WF-net as input and returns true, if

the net is sound, and false, if the net is unsound. Note that Algorithm 1 does not

formalize the way feedback is given in case of unsoundness; this was suppressed in order

to keep the formalization concise. As discussed above, feedback can directly be given in

terms of the elements that violate one of the necessary conditions for soundness.

First and foremost, Algorithm 1 comprises the biconnected decomposition of the given

WF-net along with the verification of the types of the respective cutvertices. Afterwards,

each biconnected sub-WF-net is decomposed into its triconnected subnets. For those,

the algorithm checks the necessary conditions for soundness in the general case (types

of boundary nodes of simple bonds). If these conditions are met, further necessary

conditions are checked if the respective net is free-choice. This comprises checks for

free-choice bonds, acyclic rigid subnets, and bonds derived from rigid subnets via

one-step connectivity reduction. Note that if all these conditions are met but there are

sub-WF-nets which cannot be handled by the proposed theory, we cannot conclude on

soundness directly. As our structural approach is not exhaustive, we have to incorporate

additional techniques which are capable of delivering results in the general case. For

the class of free-choice nets we rely on the soundness verification based on the Rank

Theorem, cf., Section 3.5.2, whereas in the general case we can get as exhaustive as

performing reachability analysis of a net, cf., Algorithm 1. However, we see that for
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Algorithm 1: Connectivity-based Soundness Verification of a WF-net

Input: N—a WF-net

Output: true if N is sound; false otherwise

N ′ = (P ′, T ′, F ′) := get short-circuit net of N

T 2
N ′ = (B, C, ρ, η,△) := get the tree of the biconnected subnets of N ′

foreach c ∈ C do if c ∈ T ′ then return false;

;

areFC := areSound := true

foreach b ∈ B do
b⋆ := get normalized biconnected sub-WF-net of b

isFC := true if b⋆ is free-choice; false otherwise

areFC := areFC ∧ isFC

T 3
b⋆ = (Ω,ψ, χ, τ) := get the tree of the triconnected subnets of b⋆

foreach ω ∈ Ω do

if (ω is simple bond) ∧ (ω is PT-, loop TP-, or loop TT-bordered) then
return false

if areFC ∧ (ω is bond) ∧ (ω is PT-, TP-, or loop TP-bordered) then
return false

if areFC ∧ (ω is rigid) then
if (ω is acyclic) ∧ (ω is TP-bordered) then return false

;

foreach ω′ derived from ω via one-step connectivity reduction do
if ω′ has bond that is non-loop TP-, or loop PT-bordered then

return false;

end

ω≀ := get triconnected sub-WF-net of ω

isSound := true if ω≀ is sound by Rank Theorem; false otherwise

areSound := areSound ∧ isSound
end

end

end

if areFC ∧ areSound then return true ;

else perform reachability graph analysis;

certain classes of nets, i.e., nets that are free-choice and free of triconnected rigid

subnets, our checks are even sufficient.

For validation purposes, we have implemented the verification approach that is

proposed in Algorithm 1 and tested it against a collection of industry process models;

we have used a model collection that was first used for the soundness verification in [11].

The model collection comprises 732 WF-nets, 375 of which are sound and 357 are

unsound. The authors of [11] proposed soundness checking based on heuristics and state

space exploration for the triconnected decomposition of (free-choice) process graphs and

also report on findings regarding the application of other verification techniques, such

as model checking and coverability analysis. While the authors of [11] show impressive

results in terms of efficiency, the results have been achieved under optimizations for

free-choice models. Here, our focus is different, as we aim at the verification of a general

class of process models at the expense of completeness of the verification.
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When testing the aforementioned collection of WF-nets for

soundness, we observed the following results: 732 WF-nets con-

tain 82 108 trivial, 26 818 polygon, 9 216 bond, and 553 rigid

subnets. 256 WF-nets are classified as sound. 138 bond subnets

are the cause of unsoundness (cf., Lemmas 2, 3, and 4). 56 rigid

subnets are identified as the cause of unsoundness via one-step

connectivity reduction (cf., Lemma 5), whereas 15 rigid subnets

are classified as acyclic TP-bordered (cf., Lemma 6). Moreover,

we have implemented heuristics for soundness verification that

are discussed in [35]. This allowed us to additionally classify 29

rigid subnets as the cause of unsoundness and 78 rigid subnets

as ones that can be present in sound WF-nets. These results

show that a large share of models can be indeed verified by

employing structural analysis only, among others the analysis

proposed in this article, avoiding costly state space explorations.

All the checks are performed within few milliseconds, which is

comparable with the results reported in [11].

To illustrate the application of Algorithm 1, we refer to a

fragment of a WF-net from the model collection; the fragment

is shown in Fig. 14. The algorithm classifies the net as unsound.

According to the theory of this article, there are several causes

of unsoundness that can be discovered in the fragment. We

highlight them in the figure. The net contains two TP-bordered

bonds B1 and B2 (cf., Lemma 3), which are highlighted with

black and, respectively, grey background in the top of the figure.

Moreover, the net contains TP-bordered acyclic rigid R1 (cf.,

Lemma 6), see highlighted with black background in the middle

of Fig. 14. Finally, rigid R2 is also the cause of unsoundness

of the net, see highlighted with grey background in the lower

part of the fragment. The one-step connectivity reduction of R2

reveals a TP-bordered bond (cf., Lemma 5); the entry and exit

nodes of the bond are depicted with a thick borderline in the

lower part of Fig. 14. Subnets, entries and exits of subnets, bonds

derived via one-step connectivity reduction, these are examples

of structural information which can be reported to a process

analysts as a feedback on unsoundness of the WF-net.

5 Connectivity-Based Decomposition Framework

Based on the experience which was gained in Section 3, this

section generalizes the ideas of connectivity-based decomposi-

tion of WF-nets into a comprehensive stepwise decomposition

framework, i.e., a stepwise strategy for learning the composi-

tional structure of behavioral models which use graphs as an

underlying formalization mechanism. In Section 3, we focused on

vertex connectivity of a concrete behavioral model, i.e., WF-nets.

The framework presented in this section, comprises more generic

notions of connectivity that are independent of a behavioral

model. We believe that the proposed ideas can be of use in the



22

context of further developments in research on structural analysis of distributed systems.

First, in Section 5.1, we give the definition of a graph connectivity in the most

general sense. Afterwards, principles of the connectivity-based decomposition of graphs

are explained in Section 5.2. Finally, in Section 5.3, these principles are generalized and

organized into the guidelines for decomposing behavioral models.

5.1 Connectivity of graphs

Connectivity is one of the basic concepts in graph theory. The investigations in Section 3

were performed using the connectivity property of workflow nets which is based on

removals of places and/or transitions. In general, connectivity of a graph can also be

checked based on removals of its edges. A graph G is a pair (V,E), where V is a set of

vertices (or nodes) and E ⊆ V × V is a set of edges. A graph is undirected if the edges

have no orientation, i.e., edges are treated as unordered pairs of vertices. A multi graph

is a graph that allows multiple edges between a pair of vertices.

Connectivity is a property of a graph. In an undirected (multi) graph G, two vertices

u and v are connected if G contains a path between u and v; otherwise the vertices are

considered to be disconnected. A graph G is connected if every pair of distinct vertices

in G is connected; otherwise G is disconnected. Please note that though connectivity is

defined for undirected (multi) graphs it can be used in the context of directed graphs

in a straight forward manner, i.e., by ignoring edge directions.

k-connectivity is the generalization of the connectivity property of a graph. A graph

G is k-connected if there exists no set of k−1 elements, each a vertex or an edge, whose

removal renders the graph disconnected, i.e., there is no path between some pair of

elements in the graph. The set is called a separating (k− 1)-set of G. Note that removal

of a vertex implies removal of all its incident edges. Separating 1- and 2-sets of a graph

that are composed solely of vertices are called cutvertices and separation pairs, while 1-,

2-, and 3-connected graphs are referred to as connected, biconnected, and triconnected,

respectively. Finally, the connectivity of a graph is the largest k for which the graph is

k-connected. Note that a graph composed of a single vertex is accepted to be connected,

while a complete graph that is composed of n vertices, n ≥ 2, is (n− 1)-connected.
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Fig. 15 (a) A biconnected
graph, (b) a complete graph

Fig. 15 shows two graphs. The graph in Fig. 15(a)

is biconnected. Observe that removal of any element of

the graph, either a vertex or an edge, keeps the graph

connected. However, the graph in Fig. 15(a) is not

triconnected. The removal of a separation pair {v1, v4}

renders the graph composed of two disconnected vertices

v2 and v3. Hence, the largest k for which the graph is k-

connected is 2. The graph in Fig. 15(a) can be modified

to become “better” connected. The graph in Fig. 15(b)

is obtained from the graph in Fig. 15(a) by adding a

single edge that connects vertices v2 and v3. The modified graph is a complete graph

composed of four vertices and, thus, it is triconnected. Note that removal of any pair of

elements of the graph in Fig. 15(b) renders a connected graph.

5.2 Connectivity-Based Decomposition of Graphs

A k-connected graph contains no separating (k − 1)-sets, but can contain separating

k-sets. After removing a separating set from a graph, the graph gets decomposed
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Fig. 16 (a) A graph, (b) the biconnected decomposition, and (c) the triconnected decomposition

into disconnected subgraphs (or components). Subsequently, obtained subgraphs of

higher connectivity can be decomposed by using larger separating sets. By gradually

increasing the size of separating sets used to decompose a graph, one performs a

stepwise connectivity-based decomposition of the graph. In Fig. 16(b) and Fig. 16(c), we

exemplify two steps of the connectivity-based decomposition of the graph in Fig. 16(a).

Decomposition starts with a connected graph. If a graph is disconnected, then

it must be broken into connected subgraphs and the decomposition should proceed

independently on each of the connected subgraphs. The graph in Fig. 16(a) is connected.

In a connected graph, there exists a path between every pair of vertices. However, the

existence of a path is not guaranteed if one element gets removed from the graph, either

a vertex or an edge. Vertex v2 is the only cutvertex of the graph in Fig. 16(a). If vertex

v2 gets removed, vertex v5 gets disconnected from the rest of the graph. Therefore, the

graph in Fig. 16(a) is not biconnected. A connected graph can be decomposed into

biconnected subgraphs by means of the biconnected decomposition, which computes

the biconnected subgraphs induced by the removals of cutvertices of the graph. For

instance, Fig. 16(b) shows two subgraphs of the graph in Fig. 16(a) which are induced

by the removal of its only cutvertex v2.

Each of the subgraphs in Fig. 16(b) has no separating set that is composed of a

single vertex or single edge and, hence, subgraphs are biconnected. One can proceed

with the decomposition of these subgraphs into triconnected subgraphs. This can be

accomplished by means of the triconnected decomposition, i.e., by removing separation

pairs from the biconnected subgraphs. Because subgraph ({v2, v5}, {e7, e8}) in Fig. 16(b)

is complete, the decomposition should proceed only on one subgraph. Finally, Fig. 16(c)

shows two subgraphs induced by the removal of separation pair {v2, v4}. Both subgraphs

in Fig. 16(c) are complete and, thus, decomposition terminates.

The connectivity-based decomposition, as exemplified above, gives information on

the compositional structure of a graph, i.e., subgraphs that the graph is composed of

and the principles of the subgraphs composition in the graph. In the example above,

we have first decided to decompose the graph based on its cutvertices and afterwards

decomposed induced subgraphs based on separation pairs. Note that usually the decision

on how to decompose the given (sub)graph cannot be determined uniquely. For instance,

decompositions of the subgraph in Fig. 16(b) can also be induced by removals of elements

{e9, e10} or {v2, e10}. Each sequence of decisions along decomposition of a graph results

in a unique graph decomposition strategy which allows one to observe unique structural

characteristics of the graph. In the next section, we propose a framework which organizes

and suggests graph decomposition strategies.

5.3 Decomposition Framework

In this section, we describe a framework for performing structural decompositions of

behavioral models that are formalized in the form of executable graphs. The framework
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is founded on the principles of the graph decomposition which were discussed and

exemplified in Section 5.2. We understand the framework as the research agenda which

should provide the direction when searching for new results on the verification of

workflow nets or when discovering new or improving existing techniques which are

founded on structural decompositions of behavioral models.
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Fig. 17 The visualization of
the connectivity-based decompo-
sition framework

The classical concept of graph connectivity is

based on the notion of graph elements, both vertices

and edges. In the following, we make a clear distinc-

tion! The vertex (edge) connectivity of a graph is the

size of the smallest separating set of the graph that

is composed only of vertices (edges). For an arbitrary

graph, it always holds that its vertex connectivity is

less than or equal to its edge connectivity [36]. Intu-

itively, the removal of an edge, when testing the edge

connectivity, can be substituted by the removal of

an incident vertex, which in turn implies the removal

of all its incident edges. Finally, in the most general

sense, one can speak about (n, e)-connectivity of a

graph. A graph is (n, e)-connected if there exists no set of n nodes and there exists no

set of e edges whose removal makes the graph disconnected.

An (n, e)-connected graph, is not necessarily (n + 1, e)- or (n, e + 1)-connected.

Therefore, it can be decomposed into the subgraphs of a higher connectivity. A graph

decomposition strategy is a sequence of decomposition decisions, i.e., decisions on

the decomposition of the subgraphs obtained on the previous decomposition step.

Our decomposition framework organizes and suggests possible graph decomposition

strategies based on the (n, e)-connectivity notion of graphs.

Fig. 17 visualizes the principles of the connectivity-based decomposition framework.

In the figure, each point represents a connectivity property of a graph that is subject

to decomposition. For example, point (0, 0) means that the graph is connected if no

nodes and no edges are removed. Arcs in the figure suggest which decompositions

can be performed for a graph with a certain connectivity level. For instance, one can

decompose a (0, 0)-connected graph by looking for a single node or a single edge whose

removal renders the graph disconnected. Taking one of these decomposition steps will

result in the discovery of either (1, 0)- or, respectively, (0, 1)-connected subgraphs of

the original graph. Afterwards, (1, 0)- or (0, 1)-connected subgraphs can be treated as

subjects for (2, 0)-, (1, 1)-, or (0, 2)-decomposition. By proceeding in this way, highly

connected graphs get gradually decomposed.

Fig. 17 does not suggest all possibilities for performing decompositions. For instance,

(0, 2)-connected graphs can be subjects for (2, 0)-decomposition. Within all possibilities

for organizing a graph decomposition strategy, we propose to give the preference to

the vertex-based decomposition over the edge-based one (refer to the left-most path in

Fig. 17). Such a strategy stimulates the subgraphs to be discovered “faster”, i.e., by

performing less decomposition steps, and “finer”, i.e., by discovering more subgraphs.

Recall that the vertex connectivity of a graph is less than or equal to its edge connectivity.

However, in the situations when it is absolutely important to achieve the granularity on

the level of edges, we suggest to deviate from the main strategy only once by switching

from the vertex-based to the edge-based decomposition strategy.

So far we have looked into decompositions of undirected graphs. Behavioral models,

like WF-nets, are usually formalized as directed graphs, where directions of edges route
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the flow of control through graphs. Edge directions are irrelevant for the purposes of

the connectivity-based decomposition. However, edge directions become useful when

classifying boundary nodes, i.e., nodes that connect subgraphs to the rest of the graph,

of the derived subgraphs as entries or exits. A lot of research was carried out by

the compiler theory community to gain value from the triconnected decomposition of

process specifications, i.e., the discovery of the triconnected subgraphs in process graphs.

The decompositions which proved useful are (2, 0)-decomposition, or the tree of the

triconnected components, cf., [25], and (0, 2)-decomposition, cf., [37]. The triconnected

subgraphs of a directed process graph form hierarchies of SESE fragments and are

widely used for process analysis, process comparison, process comprehension, etc.

An (n, e)-decomposition, where n+ e ≥ 3, allows one to decompose triconnected

graphs (or graphs with a higher connectivity level) into multi-entry-multi-exit (MEME)

subgraphs, with n+ e entries and exits. For reasonable (n, e) combinations, i.e., when

n+e is sufficiently small, it is possible to perform decompositions in low polynomial-time

complexity. For example, the (3, 0)-decomposition of a (2, 0)-connected graph can be

accomplished by removing a vertex from the graph and afterwards running the tricon-

nected decomposition, for which the linear time complexity algorithm exists, cf., [24].

Each discovered separation pair, together with the removed vertex, form a separating

triple of the original graph. The procedure should be repeated for each vertex in the

graph. Hence, a square-time complexity decomposition procedure can be obtained.

Following the described rationale, one can accomplish (k, 0)-decomposition of a graph

in O(nk−1) time, where n is proportional to the size of the graph.

6 Related Work

Our approach relates to other works on the verification of behavioral models. In [35],

the authors propose to organize the verification of workflow graphs from fragments that

have a single-entry edge and a single-exit edge, i.e., (0, 2)-connected subgraphs in our

classification. Albeit related, this work is based on the property of edge-connectivity,

whereas our work leverages node-connectivity, yielding a more fine granular decom-

position. Soundness checking based on heuristics and state space exploration for a

triconnected decomposition, or (2, 0)-connected subgraphs, of a (free-choice) process

graph has been proposed in [11]. Our approach goes beyond this work by embedding

the idea of the triconnected soundness checking into a decomposition approach that

allows for stepwise verification. In addition, we base our findings on Petri nets as a

generic behavioral model. Thus, our approach is able to cope with the whole spectrum

of constructs of common modeling languages that can be mapped to Petri nets (e.g.,

exception handling in BPEL processes), whereas the existing approaches rely on the

specific notion of a process graph. Note that [11] also reports findings on the application

of other verification approaches, such as LoLA and Woflan. LoLA is a tool that is

capable of checking various properties of a net by inspecting its state space [38]. To

increase efficiency, LoLA incorporates several techniques for state space reduction. For

the investigations in [11], the authors employed CTL model checking and partial order

reduction of LoLA. Woflan is a tool for verifying the soundness of workflow nets [39].

Woflan combines structural Petri net reductions, S-coverability analysis, and state

space exploration based on coverability trees into the unique verification approach. Our

approach can be used in combination with these, or any other verification techniques,

to deliver the divide and conquer strategy for verification of behavioral models.
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Verification of Petri nets can benefit from structural reductions. Reduction rules

are designed to transform a net into a smaller net while preserving essential properties

of the net. Reduction rules can be applied before verification to decrease effects of state

space explosion. Berthelot proposed a set of rules which reduce live and bounded marked

graphs to a single transition [40,41]. Desel and Esparza, in [16], proposed a complete

kit of reduction rules for free-choice Petri nets. In [20], Murata presented reduction

rules which preserve the liveness, safeness, and boundedness properties of ordinary nets.

Reduction rules constitute a line of active research not only for Petri nets, but also

for models of concurrency which extend Petri nets. The extensions aim at support of

features included in process definition languages such as BPMN, EPC, and UML activity

diagrams. In [42], Wynn et al. proposed soundness-preserving reduction rules for reset

WF-nets. Reset nets extend Petri nets with the concept of a reset flow. The semantics

of a reset arc that connects a place and a transition is to remove all tokens from the

place when the transition fires. Reset flow can be used to model cancellation. The

proposed reduction rules are based on the rules for general nets and include additional

restrictions with respect to reset arcs. By employing formal mappings of YAWL nets to

reset nets, the same authors presented soundness-preserving reduction rules for YAWL

workflow nets with cancellation regions and OR-joins [43]. Based on these rules, the

authors devised an approach to check structural properties of YAWL nets, such as the

weak soundness property, the soundness property, reducible cancellation regions, and

convertible OR-joins. Finally, in [44], the authors defined a set of reduction rules which

preserve the liveness and boundedness of reset/inhibitor nets. Reset/inhibitor nets are

reset nets with the concept of an inhibitor flow. An inhibitor arc from a place to a

transition can prevent the transition from being enabled if the place contains a token.

Inhibitor arcs are useful when modeling blocking.

A convenient property of a set of reduction rules is that of completeness. Com-

pleteness guarantees that a net can always be reduced with the help of the reduction

rules to another smaller net which hints at certain interesting property of the net, e.g.,

liveness, boundedness, or soundness. The completeness of a set of reduction rules is a

well-known problem, e.g., all of the above mentioned sets of rules are incomplete when

applied to nets of an arbitrary structure. Moreover given a set of rules, it is a challenge

to decide in which order these rules must be applied to obtain the smallest reduced

net, i.e., a net in which effects of the state space explosion problem, when checking a

property of interest, are decreased the most. We advocate the usage of a conceptually

different approach. Instead of contributing to the interminable search for a complete

set of specific reduction rules, we operate with a set of generic rules which are defined

using the connectivity property of graphs. We always operate with complete sets of

rules (regardless of the net topology) which have common structural characteristics.

Additionally, the connectivity property allows us to learn compositional structure of a

net which suggests potential orders in which rules can be applied. Therefore, instead

of searching for structural transformations which preserve an interesting property of a

net, we check if this property can be deduced from a set of all subnets of the net; the

subnets have common connectivity characteristics and collectively build up the net.

Further related work comprises inheritance preserving transformation rules for

WF-systems defined by Wil van der Aalst and Twan Basten [45]. The rules are designed

to avoid problems when migrating old workflow systems to new ones. When employed,

the rules restrict changes in such a way that new workflow systems inherit certain

properties of the old workflow systems. The rules can be applied in two directions,

i.e., to reduce or to specify a workflow system. The transformations guarantee the
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preservation of the soundness property. Albeit similar, these transformation rules are

different from the approach proposed in this article. As our focus is solely on the

verification of workflow systems, our structural implications on the soundness property

are more general. For instance, our approach is not restricted by the class of safe

workflow systems but is applicable for general workflow nets. Moreover, we additionally

describe generic structural patterns which hint at unsoundness of workflow systems, e.g.,

a transition cutvertex, cf., Lemma 1. These patterns allow us to formulate feedbacks in

cases of unsoundness. Finally, the particular feature of our approach is that it includes

instructions for identification of all needful structural patterns within a workflow system,

i.e., patterns which can confirm or reject soundness.

In [22], Wil van der Aalst exploited the hierarchical concept of transition refinement

for checking soundness of workflow systems. Similarly, the approach reported in this

article deals with the modular analysis of the soundness property. In particular, we

have investigated an efficient way for modularization of workflow nets for the purpose

of their further verification. During our investigations we reused some of the results on

compositionality of workflow nets which were reported in [22].

7 Conclusion

In this work, we have investigated the relation between the connectivity property

of a workflow net and its behavioral correctness in terms of the soundness property.

We showed that soundness verification can be conducted following on a stepwise

decomposition of a workflow net. For all the decomposition steps, we presented the

necessary structural conditions for detecting unsoundness. We showed how our results

are applied as a part of a verification procedure and tested these results against a

collection of industry process models. During our tests, we observed the application of

all formal results on the detection of unsoundness introduced in this article.

We introduced the connectivity-based decomposition framework – a systematic

approach for learning the compositional structure of behavioral models. Our main

contribution is the instantiation of this framework for soundness verification of workflow

nets. However, we see a great potential for instantiating this framework for other

modeling languages and use cases. Essentially, the connectivity-based decomposition

framework defines a research agenda for improving methods which are founded on the

structural decompositions of behavioral models.

Despite the large body of related work on the formal verification of process models,

we are not aware of any work that employs the connectivity property as an angle to their

structural analysis in a systematic way. As shown in this article, stepwise decomposition

based on connectivity is an effective and efficient way to address verification. Even though

recent work showed impressive results in terms of soundness checking efficiency [11], the

results have been achieved under optimizations for free-choice models. Our approach of

stepwise decomposition, in turn, provides the foundations to tackle general classes of

behavioral models. By employing the decomposition, we realize a divide and conquer

verification strategy that can be combined with existing verification techniques to

achieve a higher level of maturity in solutions to the problem of behavioral verification.

For instance, our decomposition strategy can be combined with the works on reduction

and inheritance rules, cf., Section 6, to guide the application of these rules. While the

decomposition is created using low-complexity algorithms, diagnostic information in

case of unsoundness is provided as well.
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The results reported in this article have already shown the usefulness of the con-

nectivity property when checking soundness of WF-nets; the results range from the

observation on cutvertices for the general class of nets to unique feedback on unsound-

ness for free-choice nets. We foresee the generalization of these results and introduction

of new results for k-connected subnets as future steps in our research.
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